Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 23(24)2022 Dec 10.
Article in English | MEDLINE | ID: covidwho-2155136

ABSTRACT

Capsid protein of Hepatitis E virus (HEV) is capable of self-assembly into virus-like particles (VLPs) when expressed in Nicotiana benthamiana plants. Such VLPs could be used as carriers of antigens for vaccine development. In this study, we obtained VLPs based on truncated coat protein of HEV bearing the M2e peptide of Influenza A virus or receptor-binding domain of SARS-CoV-2 spike glycoprotein (RBD). We optimized the immunogenic epitopes' presentation by inserting them into the protruding domain of HEV ORF2 at position Tyr485. The fusion proteins were expressed in Nicotiana benthamiana plants using self-replicating potato virus X (PVX)-based vector. The fusion protein HEV/M2, targeted to the cytosol, was expressed at the level of about 300-400 µg per gram of fresh leaf tissue and appeared to be soluble. The fusion protein was purified using metal affinity chromatography under native conditions with the final yield about 200 µg per gram of fresh leaf tissue. The fusion protein HEV/RBD, targeted to the endoplasmic reticulum, was expressed at about 80-100 µg per gram of fresh leaf tissue; the yield after purification was up to 20 µg per gram of fresh leaf tissue. The recombinant proteins HEV/M2 and HEV/RBD formed nanosized virus-like particles that could be recognized by antibodies against inserted epitopes. The ELISA assay showed that antibodies of COVID-19 patients can bind plant-produced HEV/RBD virus-like particles. This study shows that HEV capsid protein is a promising carrier for presentation of foreign antigen.


Subject(s)
Artificial Virus-Like Particles , Capsid Proteins , Hepatitis E virus , Humans , Capsid Proteins/metabolism , COVID-19 , Epitopes , Recombinant Proteins , SARS-CoV-2/metabolism , Tobacco , Antigen Presentation , Plants, Genetically Modified , Recombinant Fusion Proteins/biosynthesis
2.
Vaccines (Basel) ; 9(11)2021 Nov 17.
Article in English | MEDLINE | ID: covidwho-1524218

ABSTRACT

The COVID-19 pandemic has put global public health at high risk, rapidly spreading around the world. Although several COVID-19 vaccines are available for mass immunization, the world still urgently needs highly effective, reliable, cost-effective, and safe SARS-CoV-2 coronavirus vaccines, as well as antiviral and therapeutic drugs, to control the COVID-19 pandemic given the emerging variant strains of the virus. Recently, we successfully produced receptor-binding domain (RBD) variants in the Nicotiana benthamiana plant as promising vaccine candidates against COVID-19 and demonstrated that mice immunized with these antigens elicited a high titer of RBD-specific antibodies with potent neutralizing activity against SARS-CoV-2. In this study, we engineered the nucleocapsid (N) protein and co-expressed it with RBD of SARS-CoV-2 in Nicotiana benthamiana plant to produce an antigen cocktail. The purification yields were about 22 or 24 mg of pure protein/kg of plant biomass for N or N+RBD antigens, respectively. The purified plant produced N protein was recognized by N protein-specific monoclonal and polyclonal antibodies demonstrating specific reactivity of mAb to plant-produced N protein. In this study, for the first time, we report the co-expression of RBD with N protein to produce a cocktail antigen of SARS-CoV-2, which elicited high-titer antibodies with potent neutralizing activity against SARS-CoV-2. Thus, obtained data support that a plant-produced antigen cocktail, developed in this study, is a promising vaccine candidate against COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL